翻訳と辞書
Words near each other
・ Conchobar mac Taidg Mór
・ Conchobar Maenmaige Ua Cellaigh
・ Conchobar Maenmaige Ua Conchobair
・ Conchobar Ua Briain
・ Conchobar Ua Conchobair
・ Conchobar ua nDiarmata
・ Conchobar Ó Cellaigh
・ Conchobar Ó Muirdaig
・ Conchobhar Ua Flaithbheartaigh
・ Conchobhar Ó Coineóil
・ Conchocometa
・ Conchoderma
・ Conchodus
・ Conchoid
・ Conchoid (mathematics)
Conchoid of de Sluze
・ Conchoid of Dürer
・ Conchoidal fracture
・ Concholepas
・ Concholepas concholepas
・ Conchological Society of Great Britain & Ireland
・ Conchology
・ Conchomyces
・ Conchopoma
・ Conchoraptor
・ Conchos darter
・ Conchos shiner
・ Conchospiral
・ Conchou
・ Conchubhar mac Cumasgach


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Conchoid of de Sluze : ウィキペディア英語版
Conchoid of de Sluze

The conchoid(s) of de Sluze is a family of plane curves studied in 1662 by René François Walter, baron de Sluze.〔.〕
The curves are defined by the polar equation
:r=\sec\theta+a\cos\theta \,.
In cartesian coordinates, the curves satisfy the implicit equation
:(x-1)(x^2+y^2)=ax^2 \,
except that for ''a''=0 the implicit form has an acnode (0,0) not present in polar form.
They are rational, circular, cubic plane curves.
These expressions have an asymptote ''x''=1 (for ''a''≠0). The point most distant from the asymptote is (1+''a'',0). (0,0) is a crunode for ''a''<−1.
The area between the curve and the asymptote is, for a \ge -1,
:|a|(1+a/4)\pi \,
while for a < -1, the area is
:\left(1-\frac a2\right)\sqrt-a\left(2+\frac a2\right)\arcsin\frac1}
+ \left(1-\frac a2\right)\sqrt.
Four of the family have names of their own:
:''a''=0, line (asymptote to the rest of the family)
:''a''=−1, cissoid of Diocles
:''a''=−2, right strophoid
:''a''=−4, trisectrix of Maclaurin
==References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Conchoid of de Sluze」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.